The Brainfuck Programming Language

Brainfuck is probably the craziest language | haver had the pleasure of coming
across. The language itself is a Turing-complatguage created by Urban Mdller. It
consists of 8 operators, yet with the 8 operators;-[],. You are capable of writing
almost any program you can think of. To write peogs in Brainfuck, 1 would
suggest you get a few things first.

First, an interpretor. For Linux, you could try Bex bf, and a quick Google should
give you a variety of options to choose from foy aperating system. Next, | would
suggest an ASCII chart with all the ASCII chars dnelir decimal equivalent value.
Next on the items is would be a calculator. Anyl @d. It will help you figure out the

Greatest Common Factors for use in incrementing@ony block quickly.

THE BASICS

The idea behind Brainfuck is memory manipulatioasially you are given an array
of 30,000 1byte memory blocks. The array size igialy dependent upon the
implementation used in the compiler or interpretauf standard Brainfuck states
30,000. Within this array, you can increase the omgnpointer; increase the value at
the memory pointer, etc. Let me first present to ffte 8 operators available to us.

BrainFuck C++ equivalent Eaqation
+ a[p]++ Increases current cell value by 1
- alp]-- Decreases current cell value by 1
< p-- Decreases cell pointer by 1
> p++ Increases cell pointer by 1
[Check if the currentlaalue is zero.

If it is, jump to the matching], otherwise
while(a[p] != 0) it continues

: a[p] = (byte) getchar() Reads a user input, stores ascii value to
current cell
printf((char) a[p]) Prints current cell value as an ascii charact

Some rules:

- Any arbitrary character besides the 8 listed algivould be ignored by the compiler
or interpreter. Characters besides the 8 operatmsld be considered comments.

- All memory blocks on the "array" are set to zatohe beginning of the program.
And the memory pointer starts out on the verynafist memory block.

- Loops may be nested as many times as you wahalBumust have a
corresponding].

A few examples:

Let’s start with some examples of how to prograrBiainfuck.
The simplest program in Brainfuck is:

[-]

Well, that's what they say anyway, | hardly consitiat a program, because all it
does is enter a loop that decreases the valuedsabtbe current memory pointer until
it reaches zero, then exits the loop. But sincenainory blocks start out at zero, it
will never enter that loop. So let’'s write a reabgram.

+++++[-]

This is equivalent in C to:
while(*p = 0)
{

}

In that program we are incrementing the current orgrpointers value to 5, then
entering a loop that decreases the value locatde ahemory pointer till it is zero,
then exits the loop.

*p__;

>>>++

This will move the memory pointer to the fourth n@yblock, and increment the
value stored there by 2. So it looks like

memory blocks

[0][0][0][2][0][C]...

AN

memory pointer

As you can see in the 'k-rad' ASCII diagram, oumoey pointer points to the fourth
memory block and it increments the value there Ifyidce there was nothing there
before, it now contains the value: 2. If we takatttame program, and add more onto
the end of it like:

>S>>>++<<+>>+
At the end of our program, our memory layout wolbk like this:

memory blocks

[0][2][O][3][0][C]...

AN

memory pointer

The pointer was moved to the fourth block, incretedrihe value by 2, moved back 2
blocks to the second block, incremented the vastieckd there by 1, and then the
pointer moved 2 blocks to the right again to thertio block and incremented the
value stored there by one. And at the end of tbgnam the memory pointer lies back
on the fourth memory block. That is fine and daraiyt, we can't really see anything.
So let’s write a program that will produce actuatpuit.

A program to print “Hello World”

S++++++++H <ttt > [< S+ [<EH S < A HE]
S+++++++HH[<HH+H+>-] < S+t <EH S]< - A+
R R [P+ +H++H+[<t++4>- |<+ [-]+++++HH+H

We must remember that we are working with numlsysye must use a character's
ASCII decimal number to represent it. Then wherpwet it, will print the value as
an ASCII character. Let’s break this program down.

S+++++++H++H[<+HHHHHHE>-] <]

Let’s break this part down farther using our diagsa

>

First you can see that we increment the memorytgoto the next memory block
leaving the first memory block at zero.
memory blocks

[O][O][I0IO](O].

memory pointer

We then increase the value at our current memamgkito 9.

+++++++++
Leaving our diagram like this:

memory blocks

@MMMMMm
memory pointer

Since the block we are on contains a non-zero yalaghen enter the loop.

[
Now we are in the loop. Then we move the memorpteoione block to the left.

<
Which gives us:

memory blocks

[O1[9][0][0][0[0]. .
memory pointer
And we increment the memory blocks stored valu8.by

++++++++

So our diagram looks like:
memory blocks

@MMMMMm
memory pointer

Then we move the memory pointer one block to thktrito the second memory block
again, and decrease the value stored there fran89 t

>-

Diagram:

memory blocks

[8][8][0][0][0][C]...

AN

memory pointer

We then hit the end of our loop.

]

It checks to see if the memory block the pointerently points to contains the value
zero, but current memory block's stored value tszeoo, so the loop starts over.
Moving the pointer to the left, increasing it byad moving the pointer to the right
and decreasing it by 1. After the 2nd pass ofrait,tour diagram now looks like:

memory blocks

gwmwwmwu
memory pointer

It will continue this process over and over urtig tvalue stored at the second memory
block is zero. It then exits the loop. Once we hexied the loop. The program

moves the pointer back to the first memory block tnal time, and prints the value
stored there. If you followed that, you would skeattwe increased the first memory
blocks stored value by 8, 9 times. We know that=g?®and 72 is the ASCII decimal
value for 'H'.

<.
And the diagram:

memory blocks

[72][O[0I[0IO][O]..

memory pointer

Call the print function and 'H' is printed to thensole.

I'm going to leave it up to you to figure out havetrest of that is printing out "Hello
World!" But from that you should have the basicsr&mory pointer and value
manipulation.

Wow...that was a lot of freaking work just to prorte single character. Why you may
ask would you want to waste your time programmthis horribly inefficient
programming language?!? Well, because some hattiatractually like to do fun and
challenging things to expand their minds and makentthink.

If we were to write that in C, it would be like:

++p;
while(*p = 0){
-p;

-P;

__*p;

}

-P;
putchar(*p);

I'm going to leave it up to you to figure out havetrest of that is printing out "Hello

World!" But from that you should have the basicsr&mory pointer and value
manipulation.

INPUT/OUTPUT

Input in Brainfuck is controlled by the ', openathh will get a character and store its
ASCII decimal value to the current memory blockt tiii@ memory pointer points to.
Let’'s experiment with it a bit.

Remember, when you use the input operator, yoa@rtally storing the decimal
ASCII value of the character you press on the kayhoSo pressing 2 for input isn't
actually storing 2. Its storing the decimal valie¢he ASCII char '2', which is decimal
50.

This will take in 3 characters and print them dugt’s write something more complex.
>,[> I<[<]I>[>]

This is a program that will act like the UNIX catramand. It will read in from
STDIN and output to STDOUT. Let’s break it down.

>1

Move the memory pointer the second memory blockitepthe first block with a
value of zero. Input a value and store it at theesu memory pointer location which
is the second memory block.

[>]

Begin a loop that will move the pointer up a memioligck, and Input a value and
store it there. This will repeat until it encourster NULL character (\O or decimal
value of zero);

<[<]

Rewind. Once we've made it to this point in thegpam, it means that we have
encountered a NULL character. So in order to startoop, we need to move the
memory pointer one memory block backwards so tleahave a non-zero value
stored there. Once there, the loops starts, anesnine memory pointer one block to
the left until we reach the first memory block, ainiwe left with a value of zero at the
beginning of the program. Once it reaches the fivsinory block with the value of
zero, the loop exits.

>[.>]

Now we move our memory pointer to the right onecgpao we are now on a memory
block containing a non-zero value. We enter a lag proceed to print the current
value stored, then move the memory pointer toititg.r\We continue to do this until
we come to a memory block containing a NULL chaatero) and then the loop
exits. This program in C would be like:

++p;
*p=getchar();
while(*p = 0){
++p;
*p=getchar();
}
-P;
while(*p = 0) --p;
++p;
while(*p = 0)
{
putchar(*p);
++p;

TRICKS

There are many little tricks you can use in Braphkfto make it easier. | will try to
cover ones | have figured out.

How to MOVE or shift a value from one memory block to another:

+++++[>>+<<-]

This will set the first memory block to the valueo It then starts a loop that will
copy the value stored in the first block, to thedimemory block. Leaving the first
memory block empty again.

How to COPY from one memory block to another:

FHH++[>>+>+H<KL]SSS[KLK<HS>>A]

This little program sets the first memory blockhe value of 5. Then it goes and
copies that value to the 3rd memory block and 4muory block, leaving the first
memory block empty. It then moves the value from4th memory block back to the
first one, leaving the 4th block empty.

ADDITION of 2 memory blocks and easily be done aswell.

>+ [<+>-]

We increment the first block to 5. Move the poirttes right one block, and then
increment that block by three. We want to add #eosd memory block to the first
one. So we enter a loop that will move the poitadhe left one block, add one, then
move it to the right 1 block and subtract one.

SUBTRACTION of one block from another isjust as easy.

> [<-

We increment the first block to 7, move to the tighe block, increment it by 5, then
we begin a loop that will move the pointer to te# And subtract one then move the
pointer back to the right and decrease the vahredtthere. Doing this until we have
subtracted 5 from 7.

MULTIPLICATION we have covered beforein our hello world program, but |
will go over it again right here.

++H+[>+++++<-]

We just incremented the first blocks value to gntstarted a loop that will move the
pointer to the right one block, add 5, then moweghinter back to the left one block
and subtract one. This will accomplish multiplyiidpy 3 and leave the value stored at
the second memory block at 15.

IF Statements

Say we want to input into memory block 1. Then waild like to test if the input
value (x) was equal to 5, and if so, set y to 3eréhare two ways to do this, one is the
destructive flow control, where it diminishes theue you are test. The other
obviously non-destructive flow control where youighle stays intact. Here is non-
destructive way:

In C:
x=getchar;
if(x ==5)

y=3;
In Brainfuck it would look like:

[P+ << >SS S>> <[- [>]>>[<<<+++>>5FH)]

Once again, let's break that down to hopefully expthat better. Run though this
twice. Once as we go along assuming the value Gewsed, and once assuming the
value 5 was entered. Also, remember, Brainfuck walhly enter as loop if the value
in the block that the pointer is currently on iswrero. If the value at the block is
zero, then it will skip over that loop and ignoteAnd the same goes while in a loop.
If when it reaches the other end of that loop, (iff the value stored at the block where
the pointer is currently at is zero, it will exitet loop and continue on with the
program.

Input into x
123456

[X]yl[O][0][0][C]...

N

memory pointer

Copy from block 1, to block 3, using block 4 asatemp storage. We end on
block number 4.

[>>+>+<<<->>>[<<<H>>>]

123456
IXILyIII0IO][O]

memory pointer

Set block 5to 1. Thiswill be our block to test for true of false. Then movethe
pointer back to 3.

>+<<

123456
IXILyIIIOILLITO]

memory pointer

Now subtract 5 and if x was 5 set y to 3 and thewearthe pointer back over to block
5 and set back to zero so that the loop will only once. If x was not equal to 5, then
the pointer will end up resting on memory block 6.

[----- [C]>>[<<<+++>>>[-]]

if Xx was 5:
123456

[X][3][0][O][0][O]...

AN

memory pointer

if X was not 5
123456

[XIIy1IX][O][2][O]...

N

memory pointer

That was the non destructive way to do an if stategnil he destructive way would be
to just subtract from the input variable directigtead of copying it. This will lead to
much shorter code. Lets test x for the value 5Sragad set y to 3 if it is.

Destructive way:

>>+[<<L, - [>]>>[<<++4+>>[]]]

